Protein folding pathways and kinetics: molecular dynamics simulations of beta-strand motifs.

نویسندگان

  • Hyunbum Jang
  • Carol K Hall
  • Yaoqi Zhou
چکیده

The folding pathways and the kinetic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated using discontinuous molecular dynamics simulations. The kinetic study of protein folding was conducted by temperature quenching from a denatured or random coil state to a native state. The progress parameters used in the kinetic study include the squared radius of gyration R(2)(g), the fraction of native contacts within the protein as a whole Q, and between specific strands Q(ab). In the time series of folding, the denatured proteins undergo a conformational change toward the native state. The model proteins exhibit a variety of kinetic folding pathways that include a fast-track folding pathway without passing through an intermediate and multiple pathways with trapping into more than one intermediate. The kinetic folding behavior of the beta-strand proteins strongly depends on the native-state geometry of the model proteins and the size of the bias gap g, an artificial measure of a model protein's preference for its native state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Complex folding pathways in a simple beta-hairpin.

The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer and Creutzfeld-Jakobs diseases, among others. The computational community has paid considerable attention to this problem; however, the associated time scale, typically on the order of milliseconds or more, represents a formidable challenge. Ab initio protein fol...

متن کامل

Efficient Traversal of Beta-Sheet Protein Folding Pathways Using Ensemble Models

Molecular dynamics (MD) simulations can now predict ms-timescale folding processes of small proteins; however, this presently requires hundreds of thousands of CPU hours and is primarily applicable to short peptides with few long-range interactions. Larger and slower-folding proteins, such as many with extended β-sheet structure, would require orders of magnitude more time and computing resourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2002